

VISA: THE VOICE INTEGRATION/SEGREGATION ALGORITHM

Ioannis Karydis Alexandros
Nanopoulos

Apostolos
Papadopoulos

Emilios
Cambouropoulos

Department of Computer Science
Aristotle University of Thessaloniki

{karydis, ananopou, apostol}@csd.auth.gr

Dept. of Music Studies
Aristotle Univ. of Thessaloniki

emilios@mus.auth.gr
ABSTRACT

Listeners are thought to be capable of perceiving
multiple voices in music. Adopting a perceptual view of
musical ‘voice’ that corresponds to the notion of
auditory stream, a computational model is developed
that splits a musical score (symbolic musical data) into
different voices. A single ‘voice’ may consist of more
than one synchronous notes that are perceived as
belonging to the same auditory stream; in this sense, the
proposed algorithm, may separate a given musical work
into fewer voices than the maximum number of notes in
the greatest chord. This is paramount, among others, for
developing MIR systems that enable pattern recognition
and extraction within musically pertinent ‘voices’ (e.g.
melodic lines). The algorithm is tested qualitatively and
quantitatively against a small dataset that acts as
groundtruth.

1. INTRODUCTION

Recently, there have been a number of attempts [3, 5, 8,
9, 10, 11, 12] to model computationally the segregation
of polyphonic music into separate voices. Much of this
research is influenced by empirical studies in music
perception [1, 6, 7] as well as by musicological concepts
such as melody, counterpoint, voice-leading and so on.

It appears that the term ‘voice’ has different
meanings for different research fields (traditional
musicology, music cognition, computational
musicology). A detailed discussion in presented in [1].
A single musical example is given (Figure 1) that
presents three different meanings of the term voice.

Figure 1 Number of voices: in terms of literal voices
(human or monophonic) we have in the three examples
one, two and three voices respectively; in terms of
harmonic voices all examples can be understood as
comprising of three voices (triadic harmony); in terms
of perceptual voices/streams each example is perceived
as a single auditory stream (harmonic accompaniment).

The standard understanding of the term voice is that
voice is a monophonic sequence of successive non-

overlapping musical tones; a single voice is thought not
to contain multi-tone sonorities. However, if ‘voice’ is
seen in the light of auditory streaming,1 then, it becomes
clear that the standard meaning is not sufficient. It is
possible that a single monophonic sequence may be
perceived as more than one voices/streams (e.g.,
pseudopolyphony or implied polyphony) or that a
passage containing concurrent notes may be perceived
as a single perceptual entity (e.g., homophonic passages
as in Fig.1c).

The perceptual view of voice adopted in this study,
that allows multi-tone simultaneities in a single ‘voice’,
is the most significant difference of the proposed model
to the other existing models. In the examples of Figure
1, all existing algorithms (see exception regarding
Kilian and Hoos’s algorithm in the next section), that
are based on purely monophonic definitions of voice,
would find two voices in the second example (Figure
1b) and three voices in the third example (Figure 1c). It
is clear that such voices are not independent voices and
do not have a life of their own; it makes more musical
sense to consider the notes in each example as a single
coherent whole (a unified harmonic sequence). The
algorithm proposed in this paper determines that in all
three examples we have a single ‘voice’/stream.

In this paper, initially, a number of recent voice
separation algorithms are briefly described and their
main differences to the current proposal are highlighted.
Then, the fundamental auditory streaming principles
that form the basis of the proposed model are presented.
The description of the algorithm follows. Finally, the
way the algorithm has been evaluated and the results of
the application of the algorithm on eight different
musical works are presented.

2. RELATED WORK

Voice separation algorithms are very useful in
computational implementations as they allow pre-
processing of musical data opening thus the way for
more efficient and higher quality analytic results. In
domains such as music information retrieval or
automated musical analysis, having sophisticated
models that can identify multiple melodic voices and/or
‘voices’ consisting of multi-note sonorities can assist
more sophisticated processing within the voices (rather
than across voices). For instance, if one wants to
identify musical works that contain a certain melodic
pattern, this pattern should be found not spread across

1 Auditory stream integration/segregation (in music) determines how
successions of musical events are perceived as belonging to coherent
sequences and, at the same time, segregated from other independent
musical sequences.

© 2007 Austrian Computer Society (OCG).

different parts (perceptually implausible) neither in
voices that are not perceptually independent (e.g. inner
parts in an accompaniment) but within voices that are
heard as having a life of their own.

Voice separation algorithms such as [3, 5, 8, 9, 10,
11, 12] assume that ‘voice’ is a monophonic sequence
of successive non-overlapping musical tones (exception
is the model by Kilian and Hoos [8] which is discussed
below). The underlying perceptual principles that
organise tones in voices are the principles of temporal
and pitch proximity (cf. Huron’s [7] Temporal
Continuity and Pitch Proximity principles).

In essence, these models attempt to determine a
minimal number of lines/voices such that each line
consists of successions of tones that are maximally
proximal in the temporal and pitch dimensions
(maximum number of voices is equal to the number of
notes in the largest chord). These models assume that a
voice is a succession of individual non-overlapping
tones (sharing of tones between voices or crossing of
voices is forbidden or discouraged).

Kilian and Hoos’s [8] model is pioneering in the
sense that multi-note sonorities within single voices are
allowed. The pragmatic goal of the algorithm is the
derivation of reasonable score notation - not
perceptually meaningful voices (see [8], p.39). The
algorithm is based on perceptual principles in terms of a
cost function that sums penalty values for features
promoting segregation, such as large pitch intervals,
rests/gaps, and note overlap between successive notes,
and large pitch intervals and onset asynchrony within
chords; penalty values are user-defined. The results,
however, are not necessarily perceptually valid (e.g., a
4-part homophonic piece may be ‘forced’ to split into
two musical staves that do not correspond to
perceptually pertinent streams). The algorithm does not
discover automatically the number of independent
musical ‘voices’ in a given excerpt; if the user has not
defined the maximum number of voices, the algorithm
automatically sets the maximum number equal to the
maximum number of co-sounding notes – in this case
the algorithm becomes similar to all other algorithms
mentioned above.

Kilian and Hoos’s model allows multiple
synchronous or overlapping tones in a single voice
based on pitch and temporal proximity. However, there
are two problems with the way this idea is integrated in
the model. Firstly, simple pitch and temporal proximity
are not sufficient for perceptually pertinent ‘vertical’
integration (see next section). For instance, their model
can separate a 4-part fugue into two ‘streams’ based on
temporal and pitch proximity, but these two ‘streams’
are not perceptual streams but rather a convenient way
to divide notes into two staves. In perceptual terms,
overlapping tones with different onsets and durations do
not tend to merge (there exist, however, special cases
where this happens – not discussed in this paper).
Secondly, synchronous notes that are separated by a
small pitch interval are not in general more likely to be
fused than tones further apart. For instance, tones an
octave apart are strongly fused whereas tones a 2nd apart
are less likely to be fused (see next section). The

perceptual factor of tonal fusion is not taken into
account by the model.

3. PERCEPTUAL PRINCIPLES FOR VOICE
SEPARATION

In this section, fundamental principles of perceptual
organisation of musical sounds into streams will be
presented that form the basis of the current
computational model (next section). Huron [7] provides
an excellent survey of relevant research and presents a
set of 10 principles that cover all major aspects of
stream integration/segregation; we will use four of these
principles as the starting-point of our exploration.

3.1. Vertical Integration

Bregman [1] explores in depth processes relating to the
perceptual integration/segregation of simultaneous
auditory components. In this paper, we will focus only
on two aspects of such processes that relate to two
principles presented by Huron [7], namely the principles
of Onset Synchrony and Tonal Fusion.

Sounds that are coordinated and evolve
synchronously in time tend to be perceived as
components of a single auditory event. Concurrent
tones that start, evolve and finish together tend to be
merged perceptually. The proposed principle (below)
relates to Huron’s Onset Synchrony Principle but it
differs in a number of ways as discussed by
Cambouropoulos [2].

Synchronous Note Principle: Notes with synchronous
onsets and same inter-onset intervals IOIs (durations)
tend to be merged into a single sonority.

A second important factor for vertical integration of
tones, relates to the Principle of Tonal Fusion:

Principle of Tonal Fusion: The perceptual
independence of concurrent tones is weakened when
they are separated by intervals (in decreasing order:
unisons, octaves, perfect fifths…) that promote tonal
fusion ([7], p.19).

This principle suggests that concurrent pitches are
integrated depending on the degree of tonal fusion
implied by interval type rather than mere pitch
proximity; this principle appears to be (at least partially)
in conflict with the pitch proximity principle that has
been adopted for vertical integration in the
computational model by Kilian and Hoos [8].

Finally, according to the Pitch Co-modulation
Principle: ‘The perceptual union of concurrent tones is
encouraged when pitch motions are positively
correlated.’ ([7], p.31) The strongest manifestation of
this principle is when notes move in parallel intervals
(especially in octaves). This principle has not yet been
incorporated in the current version of the algorithm.

3.2. Horizontal Integration

The horizontal integration of musical elements (such as
notes or chords) relies primarily on two fundamental
principles: Temporal and Pitch Proximity. These
principles are described by Huron [7] as follows:

Principle of Temporal Continuity: ‘In order to evoke
strong auditory streams, use continuous or recurring

rather than brief or intermittent sound sources.
Intermittent sounds should be separated by no more
than roughly 800ms of silence in order to ensure the
perception of continuity.’ (p.12).
Pitch Proximity Principle: ‘The coherence of an
auditory stream is maintained by close pitch proximity
in successive tones within the stream. …’ (p.24)

Most existing voice separation research takes these two
principles as the basis for computational models.

It is suggested, that a voice separation algorithm
should start by identifying synchronous notes that tend
to be merged into single sonorities and then use the
horizontal streaming principles to break them down into
separate streams (most algorithms ignore the vertical
component). This is an optimization process wherein the
various perceptual factors compete with each other in
order to produce a ‘simple’ interpretation of the music
in terms of a minimal number of streams.

4. VISA: THE VOICE
INTEGRATION/SEGREGATION ALGORITHM

In this section we describe the proposed voice
separation algorithm, referred to as Voice
Integration/Segregation Algorithm (VISA).

4.1. Merging Notes into Single Sonorities

During vertical integration, according to the
synchronous note principle (described in Section 3.1),
we have to determine when to merge concurrent notes,
i.e., notes with synchronous onsets and same IOIs. Since
it is possible that synchronous notes may belong to
different voices, we need a way to decide if such
merging should be applied.

Given a set of concurrent notes, the algorithm
examines a certain musical excerpt (window) around
them. If inside the window, most co-sounding notes
have different onsets/offsets, then it is most likely that
we have independent monophonic voices so occasional
synchronous notes should not be merged.

In particular, let the entire musical piece be
represented as a list L of notes that are sorted according
to their onset times. For any note n ∈ L, O(n) denotes its
onset time. Moreover, for two notes n1 and n2 ∈ L, with
O(n1) ≤ O(n2), inter(n1,n2) denotes the number of all
intermediate notes, i.e., all nk ∈ L with O(n1) ≤ O(nk) ≤
O(n2). For a given set S of concurrent notes and a
window size w, we consider the set W that contains the
notes in a window with length w and centred on S. Thus,
W is defined as follows:
W={ni ∈L-S | ∀ n ∈ S inter(ni, n) ≤ w/2 ∨ inter(n, ni) ≤ w/2}

Next, we examine if concurrency is frequent within
W. We define the ratio r as follows (where IOI(n)
denotes the inter-onset interval of note n):

|)}()(,,|),{(|
|)}()()()(,,|),{(|

jijiji

jijijiji

nOnOWnWnnn
nIOInIOInOnOWnWnnn

r
=∈∈

=∧=∈∈
=

Thus, by having a user-defined threshold T (in the range

[0,1]) that signifies frequency, if r > T, we merge the
notes of S as a single sonority.1

4.2. The Algorithm

The Voice Integration/Segregation Algorithm (VISA),
receives as input the musical piece in the form of a list L
of notes that are sorted according to their onset times, a
window size w, and the threshold T. The output is a set
of lists V (initially empty). After termination, each list
contains the notes of each detected voice, each sorted
according to onset times. Notice that VISA does not
demand a-priori the number of voices. The proposed
algorithm is illustrated in Figure 2.

VISA(NoteList L, Set NoteList V, int w, float T)
begin

V ← ∅;
while ((SLS ← getNextSweepLineSet(L)) ≠∅)
begin-while

C ←ClusterVertically(SLS, w, T);
if (|V | < |C |)
begin-if

MatchVoicesToClusters(V, C);
else

MatchClustersToVoices(C, V);
end-if

end-while
end

Figure 2 The VISA algorithm.

In VISA, a sweep line, starting from the beginning of L,
proceeds in a step-wise fashion (procedure
getNextSweepLineSet) to the next onset time in L.
The set of notes that have onsets equal to the position of
the sweep line, is denoted as sweep line set (SLS).
Notice that an SLS may contain one or more notes.
Next, every SLS is divided into clusters using a
procedure called ClusterVertically, which partitions the
notes in the SLS into a set of clusters C. The
ClusterVertically procedure, according to Section 4.1,
has to detect contextual information, accepting, thus, as
parameters w and T. If, based on context, we decide to
merge concurrent notes; each cluster contains all notes
with the same IOI (recall that all notes in SLS have
identical onset time). Otherwise, if merging is not
decided, each cluster contains a single note. The reason
for this kind of clustering is two-fold: (i) Concurrent
notes are highly probable to belong to the same voice,
thus if merging is decided, they are initially placed in the
same cluster (as will be explained later on a cluster may
split). (ii) Overlapping (in time) but not concurrent
notes, are placed into different clusters, because we do
not desire any overlapping between notes of the same
voice.

Given the set of clusters, C, we have to assign them
to voices. We can form a bipartite graph, where the one
set of vertices corresponds to the currently detected
voices and the other set of vertices corresponds to the
clusters in C. Between every pair of vertices in the
bipartite graph, i.e., between every detected voice vi and
cluster cj, we draw an edge to which we assign a cost.

1 The denominator of r is the number of pairs with same onset times, as
they represent the potential concurrent notes within W.

This cost is compound and is determined by the two
principles described in Section 3.2. Thus, according to
the Principle of Temporal Continuity, we add to the edge
cost an amount equal to the difference between the onset
time of the notes in cj and the onset time of the most
recent note (or most recent cluster of notes) in vi. If the
notes in cj and the last note (or last cluster of notes) in vi
overlap in time, then we set the edge cost equal to
infinity, in order to forbid the assignment of cj to vi.
Moreover, according to the Pitch Proximity Principle,
we add to the cost the minimum absolute difference
between the pitches of notes in cj and the pitch of the last
note (or last cluster of notes) in vi. Thus, the total cost on
the edge represents the temporal and pitch proximity
between each pair cj and vi.

Having determined the cost on every edge, we can
solve the assignment problem by finding the matching
with the lowest cost in the bipartite graph. Two cases are
possible: (i) If |V| < |C|, i.e., the number of currently
detected voices is smaller than the number of clusters in
the SLS, then we match voices to clusters (procedure
MatchVoicesToClusters). This is done by assigning to
each of the currently detected voices a cluster, in a way
that the total cost is minimized. The remaining clusters
that have not been assigned to a voice constitute new
voices that are added to V. This case is handled inside
procedure MatchVoicesToClusters. (ii) Conversely, if
|V| ≥ |C|, we match clusters to voices (procedure
MatchClustersToVoices), i.e., each cluster is assigned
to one of the currently detected voices, in a way that the
total cost is minimized. Even though in the latter (ii) case
the clusters are fewer than the voices, due to possible
overlapping between notes in them, a matching may not
be feasible (the total cost equals infinity). We handle this
case (inside procedure MatchClustersToVoices) by
creating new voices that enable a matching.

Finally, we introduce two extra constraints to the
problem of a matching. The first one is that voice
crossing should be avoided, thus a sub-optimal solution
in terms of cost may be required that avoids voice
crossing. The second one is that, according to the Top
Voice Rule [11], the matching has to take into account
that the top voice should be minimally fragmented. This
is handled by adding a penalty P to the cost of a
matching that does not fulfil this rule. To find the
matching with the minimal cost, a cluster may be split
into sub-clusters, so that one can be assigned to the top
voice. This may hold particularly in the special case
where C contains a single cluster and there are more
than one voices. More details about the inclusion of the
two constraints in the matching procedures are given in
Section 4.3.

4.3. The Matching Process

For convenience, we convert the minimisation problem
to an equivalent maximisation one. Therefore, we are
interested in maximising the total matching instead of
minimising it. For this reason, the assignment of the cost
w(eij) between a voice vi and a cluster cj is converted to
max{ekl} – w(eij), where max{ekl} is the maximum edge
cost determined for the specific instance of the matching

problem (and this cost is due to the edge connecting
voice vk and cluster cl) .

(a) pair-wise costs

v1

v2

v3

v1

v2

v3

c1

c2

c3

c4

c5

c1

c2

c3

c4

c5

v1 9 1 9 1
v2 9 1 1 5
v3 0 1 0 5

c1 c2 c3 c4 c5

1
0
8

(b) best matching (c) best crossing-free matching
Figure 3 Maximum matching examples

Traditional bipartite matching algorithms do not
preserve the order of the matching. In our case, order
preservation is important because voice crossing should
be avoided. By enforcing the rule that each matched pair
should not ‘intersect’ another matched pair, a new
problem is formulated that can not be directly tackled by
bipartite matching algorithms. This issue is depicted in
Figure 3, where an instance is illustrated with three
voices and five clusters. Figure 3(a) gives the pair-wise
costs for assigning voices to clusters. A maximum
weighted matching is given in Figure 3(b), with a total
cost of 9+9+5 = 23. Evidently, the maximum weighted
matching in this graph does not necessarily avoid voice
crossing. A crossing-free maximum weighted matching
with cost 9+5+8 = 22 is depicted in Figure 3(c).

Although the number of voices and clusters is
usually small (i.e., 3, 4, 5) we propose en efficient
solution which can handle larger numbers of voices and
clusters. The naïve approach to determine the best
crossing-free matching is to perform an exhaustive
search. This technique does not scale well for larger
number of voices and clusters.

The proposed matching algorithm is based on
dynamic programming (Cormen et. al. 2001). Let VSEQ
denote the sequence of notes, and CSEQ be the
sequence of clusters. Without loss of generality, we
assume that we have less voices than clusters, i.e.
|VSEQ| < |CSEQ|. Equality is trivially solved by
matching the first voice to the first cluster, the second
voice to the second cluster and so forth. The case where
|VSEQ| > |CSEQ| is handled similarly. Let Mij denote the
current total matching cost after voice vi and cluster ci
have been matched. The recurrence formula used by the
dynamic programming technique in our case is the
following:

Mij = max{Mi-1,j-1 + w(i,j), Mi-1,j}

This formula states that either voice vi will be matched
with cluster cj, or a gap will be placed in the voice
sequence, meaning that we postpone the matching of vi.
We illustrate the matching process by using the example
instance given in Figure 3. Therefore, VSEQ = v1, v2, v3
and CSEQ = c1, c2, c3, c4, c5. The matching process for
is depicted in Figure 4(a), where each cell of the matrix
M represents the total matching cost. The matrix has
3+1=4 rows and 5+1=6 columns (an additional row and
column have been placed). The matrix is filled
according to the previous recurrence equation, by
starting at the upper-left cell and ending at the lower-

right one. Initially we place a zero in the first row and
first column of the matrix. The cost of the maximum
matching is shown in the lower-right cell, which
contains the value 22.

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

 c1 c2 c3 c4 c5

v1
v2
v3

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

 c1 c2 c3 c4 c5

v1
v2
v3

(a) matching costs (b) matching path

 c1 c2 c3 c4 c5

 v1 __ __ v2 v3

(c) final assigment
Figure 4 The matching process

The best matching cost by itself does not give the
assignment of voices to clusters. To achieve this, the
matching path needs to be determined. We perform a
trace-back process starting at the cell which contains the
best matching value (i.e. cell with the value 22 in the
matrix). Based on the fact that the matching cost of v3
and c5 is 8, the only possible predecessors are the top
and diagonal cells which contain the value 14. However,
in the trace-back process we never choose a vertical cell,
since no gaps are allowed to be placed on the cluster
sequence, meaning that all voices must be matched. The
only alternative left is to choose the diagonal cell. This
means that voice v3 will be matched to cluster c5. The
current cell is now (2,4) which contains the value 14.
Again, since the matching cost of v2 and c4 is 5, the only
valid predecessor is cell (1,3) which contains the value 9
(recall that we never move vertically). Since we have
chosen to move diagonally, we match voice v2 to cluster
c4. The next two steps involve a horizontal movement,
meaning that we place two gaps in the voice sequence.
These steps take us to cell (1,1) from where we can only
move diagonally to cell (0,0). This diagonal movement
implies an assignment of voice v1 to cluster c1. The final
assignment is given in Figure 4(c), whereas the matching
path is given in Figure 4(b), and is represented by the
shaded cells.

According to the previous discussion, the running
time of the algorithm is O(n*m) (n>=2, m>=2) where n
is the number of voices and m the number of clusters.
Evidently, we need O(n*m) time to calculate all
elements of the matrix M, and O(n+m) time to
reconstruct the matching path. On the other hand, if an
exhaustive algorithm is used the number of all available
crossing-free matchings that can be produced are
C(m,n), which are all possible combinations of selecting
n out of m items. For some values of m and n, the
exhaustive algorithm performs better than dynamic
programming. Therefore, according to the current values
of m and n we can decide whether to use the exhaustive
method or switch to dynamic programming. However,
even if in several cases the exhaustive method performs
better, counting all possible matchings and selecting the
best one may become tedious, since we have to keep
track of which matchings have been examined and
which have not. On the other hand, dynamic

programming offers a more clear framework and
determines the best matching in a more manageable and
systematic way.

5. EXPERIMENTS AND RESULTS

The proposed algorithm has been tested on a small set
of musical works for piano. Eight pieces with clearly
defined streams/voices are used as groundtruth for
testing the performance of the algorithm. The first four
pieces are two fugues and two inventions by J.S.Bach;
these polyphonic works consist of independent
monophonic voices. Two mazurkas and a waltz by
F.Chopin consist of a melody (upper staff) and
accompanying harmony (lower staff). Finally, the
“Harmony Club Waltz” by S.Joplin has two parallel
homophonic streams (chordal ‘voices’) that correspond
to the two piano staves. See excerpts in Figures 5, 6, 7.

In this pilot study, the aim was to examine if a single
algorithm can be applied to two very different types of
music (i.e. pure polyphonic music and music containing
clear homophonic textures). All the parameters of the
algorithm are the same for all eight pieces; the number
of streams/voices is determined automatically (not set
manually). It should be noted that for the pieces by
Chopin and Joplin all other voice separation algorithms
would determine automatically at least four different
voices (up to eight voices) that do not have perceptual
validity (and musicologically are problematic).

Annotated datasets for musical streams/voices - as
voices are defined in this paper - do not exist. A small
dataset was therefore selected for which it is assumed
that musicologists/musical analysts would unreservedly
agree on the number of independent musical streams in
each piece.1 At present, the algorithm has been applied
to quantised musical data (symbolic scores converted to
MIDI) - expressively performed musical data can be
quantised (e.g., [3]) before being fed into the algorithm.

Figure 5 Four independent streams/voices are present
in this excerpt from the Fugue No.1 in C major, WTCI,
BWV846 by J.S.Bach. The algorithm performs voice
separation correctly except for the last five notes of the
upper voice which are assigned to the second voice
rather than the first voice (as these are closer by a
semitone to the last note of the second voice).

Figure 6 In the opening of the Mazurka, Op.7, No.5 by
F.Chopin, the algorithm detects correctly one voice
(low octaves) and, then, switches automatically to two
voices (melody and accompaniment).

1 These independent ‘voices’ correspond to separate spines in the kern
format; all four test pieces have been obtained from KernScores
<http://kern.humdrum.org>.

Figure 7 Two independent chordal streams/voices are
correctly determined by the algorithm in this excerpt
from the “Harmony Club Waltz” by S.Joplin; the only
mistake is indicated by the circled note which is placed
‘erroneously’ in the upper stream (because of pitch
proximity).

The evaluation metrics used is the precision of the
obtained result. For the previously described musical
dataset, Table 1 shows the results. The effectiveness of
the proposed methodology is evident by the high
precision rates achieved for all eight pieces.

Musical Work Precision

J.S.Bach, Fugue No.1 in C major, BWV846 92,38%
J.S.Bach, Fugue No.14 in F# major, BWV859 95,56%
J.S.Bach, Invention No.1 in C Major, BWV 772 99.34%
J.S.Bach, Invention No.13 in A Min, BWV 784 96.45%
F. Chopin, Mazurka, Op.7, No.5 100%
F. Chopin, Mazurka in A Minor, Op. 67, No.4 85.00%
F. Chopin, Waltz in B Minor, Op. 69, No. 2 90.31%
S.Joplin, “Harmony Club Waltz” 98.12%

Table 1 Results in terms of precision for the dataset.

Additionally, we have experimented with the impact of
the user-defined threshold value T on the precision of the
proposed algorithm (Figure 8). The mazurka and waltz
datasets naturally exhibit increased synchronicity of
notes, thus lower values of T give high precision, while
on the contrary, the two fugues do not include notes that
can be merged into single sonorities and thus require
higher values of T.

0

10

20

30

40

50

60

70

80

90

100

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

user-defined threshold T

Pr
ec

is
io

n
%

Op.7, No.5
harmony
BWV846
BWV859

Figure 8 Precision vs. user-defined threshold T.

The results were examined in detail (qualitative
analysis) in order to understand the kinds of mistakes
produced by the algorithm. The majority of wrong
results were given in cases where the number of voices
change and erroneous connections are introduced
primarily due to pitch proximity (for instance, see last
upper five notes in Figure 5). Kilian and Hoos [8]
address this same problem claiming that, in essence, it is
unsolvable at the note level. A second kind of problem
involves voice crossing. Since voice crossing is
disallowed by the algorithm notes at points where

voices cross (in the Bach fugues) are assigned to wrong
voices. A third type of mistake relates to the breaking of
vertically merged notes into sub-sonorities and
allocating these to different voices; in this case the
breaking point in the sonority may be misplaced (see,
for instance, circled note in Figure 7).

6. CONCLUSIONS

In this paper the notions of voice and auditory stream
have been examined. It is suggested that, if ‘voice’ is
understood as a musicological parallel to the concept of
auditory stream, then multi-note sonorities should be
allowed within individual ‘voices’. It is proposed that a
first step in voice separation is identifying synchronous
note sonorities and, then, breaking these into sub-
sonorities incorporated in horizontal streams or ‘voices’.

The proposed voice separation algorithm, VISA,
incorporates the two principles of temporal and pitch
proximity, and additionally, the Synchronous Note
Principle and the Tonal Fusion Principle. Allowing both
horizontal and vertical integration enables the algorithm
to perform well not only in polyphonic music that has a
fixed number of ‘monophonic’ lines but in the general
case where both polyphonic and homophonic elements
are mixed together (see, for instance, Figure 6). We
have shown in the above experiments that a single
algorithm, with the same parameters, can achieve good
performance in diverse musical textures in terms of
identifying perceptually pertinent voices/streams.
Ongoing research involves testing the algorithm on a
much larger database; future work will incorporate
additional principles such as the Pitch Co-modulation
Principle.

7. REFERENCES

[1] Bregman, A (1990) Auditory Scene Analysis: The
Perceptual Organisation of Sound. The MIT Press,
Cambridge (Ma).

[2] Cambouropoulos, E. (2006) ‘Voice’ Separation:
theoretical, perceptual and computational perspectives. In
Proceedings of the 9th International Conference in Music
Perception and Cognition (ICMPC2006), 22-23 August,
Bologna, Italy.

[3] Cambouropoulos, E. (2000) From MIDI to Traditional
Musical Notation. In Proceedings of the AAAI Workshop
on Artificial Intelligence and Music, July 3 - Aug. 3,
Austin, Texas.

[4] Cormen, T., Leiserson, C.E., Rivest, R.L. and Stein, C
(2001). Introduction to Algorithms, The MIT Press,
Cambridge (Ma).

[5] Chew, E. and Wu, X. (2004) Separating voices in
polyphonic music: A contig mapping approach. In
Computer Music Modeling and Retrieval: Second
International Symposium (CMMR 2004), pp. 1-20.

[6] Deutsch, D. (1999) Grouping Mechanisms in Music. In D.
Deutsch (ed.), The Psychology of Music (revised version).
Academic Press, San Diego.

[7] Huron, D. (2001) Tone and Voice: A Derivation of the
Rules of Voice-Leading from Perceptual Principles. Music
Perception, 19(1):1-64.

[8] Kilian j. and Hoos H. (2002) Voice Separation: A Local
Optimisation Approach. In Proceedings of the Third

International Conference on Music Information Retrieval
(ISMIR 2002), pp.39-46.

[9] Kirlin, P.B. and Utgoff, P.E. (2005) VoiSe: Learning to
Segregate Voices in Explicit and Implicit Polyphony. In
Proceedings of the Sixth International Conference on
Music Information Retrieval (ISMIR 2005), Queen Mary,
Univ. of London (pp. 552-557).

[10] Madsen, S. T. and Widmer, G. (2006) Separating Voices
in MIDI. In Proceedings of the 9th International
Conference in Music Perception and Cognition
(ICMPC2006), 22-26 August 2006, Bologna, Italy.

[11] Temperley, D. (2001) The Cognition of Basic Musical
Structures. The MIT Press, Cambridge (Ma).

[12] Szeto, W.M. and Wong, M.H. (2003) A Stream
Segregation Algorithm for Polyphonic Music Databases.
In Proceedings of the Seventh International Database
Engineering and Applications Symposium (IDEAS’03).

