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ABSTRACT 

Listeners are thought to be capable of perceiving 
multiple voices in music. Adopting a perceptual view of 
musical ‘voice’ that corresponds to the notion of 
auditory stream, a computational model is developed 
that splits a musical score (symbolic musical data) into 
different voices. A single ‘voice’ may consist of more 
than one synchronous notes that are perceived as 
belonging to the same auditory stream; in this sense, the 
proposed algorithm, may separate a given musical work 
into fewer voices than the maximum number of notes in 
the greatest chord. This is paramount, among others, for 
developing MIR systems that enable pattern recognition 
and extraction within musically pertinent ‘voices’ (e.g. 
melodic lines). The algorithm is tested qualitatively and 
quantitatively against a small dataset that acts as 
groundtruth.  

1. INTRODUCTION 

Recently, there have been a number of attempts [3, 5, 8, 
9, 10, 11, 12] to model computationally the segregation 
of polyphonic music into separate voices. Much of this 
research is influenced by empirical studies in music 
perception [1, 6, 7] as well as by musicological concepts 
such as melody, counterpoint, voice-leading and so on.   

It appears that the term ‘voice’ has different 
meanings for different research fields (traditional 
musicology, music cognition, computational 
musicology). A detailed discussion in presented in [1]. 
A single musical example is given (Figure 1) that 
presents three different meanings of the term voice. 

 
Figure 1 Number of voices: in terms of literal voices 
(human or monophonic) we have in the three examples 
one, two and three voices respectively; in terms of 
harmonic voices all examples can be understood as 
comprising of three voices (triadic harmony); in terms 
of perceptual voices/streams each example is perceived 
as a single auditory stream (harmonic accompaniment).  

The standard understanding of the term voice is that 
voice is a monophonic sequence of successive non-

overlapping musical tones; a single voice is thought not 
to contain multi-tone sonorities. However, if ‘voice’ is 
seen in the light of auditory streaming,1 then, it becomes 
clear that the standard meaning is not sufficient. It is 
possible that a single monophonic sequence may be 
perceived as more than one voices/streams (e.g., 
pseudopolyphony or implied polyphony) or that a 
passage containing concurrent notes may be perceived 
as a single perceptual entity (e.g., homophonic passages 
as in Fig.1c).  

The perceptual view of voice adopted in this study, 
that allows multi-tone simultaneities in a single ‘voice’, 
is the most significant difference of the proposed model 
to the other existing models. In the examples of Figure 
1, all existing algorithms (see exception regarding 
Kilian and Hoos’s algorithm in the next section), that 
are based on purely monophonic definitions of voice, 
would find two voices in the second example (Figure 
1b) and three voices in the third example (Figure 1c). It 
is clear that such voices are not independent voices and 
do not have a life of their own; it makes more musical 
sense to consider the notes in each example as a single 
coherent whole (a unified harmonic sequence). The 
algorithm proposed in this paper determines that in all 
three examples we have a single ‘voice’/stream. 

In this paper, initially, a number of recent voice 
separation algorithms are briefly described and their 
main differences to the current proposal are highlighted. 
Then, the fundamental auditory streaming principles 
that form the basis of the proposed model are presented. 
The description of the algorithm follows. Finally, the 
way the algorithm has been evaluated and the results of 
the application of the algorithm on eight different 
musical works are presented.  

2. RELATED WORK 

Voice separation algorithms are very useful in 
computational implementations as they allow pre-
processing of musical data opening thus the way for 
more efficient and higher quality analytic results.  In 
domains such as music information retrieval or 
automated musical analysis, having sophisticated 
models that can identify multiple melodic voices and/or 
‘voices’ consisting of multi-note sonorities can assist 
more sophisticated processing within the voices (rather 
than across voices). For instance, if one wants to 
identify musical works that contain a certain melodic 
pattern, this pattern should be found not spread across 
                                                           
1 Auditory stream integration/segregation (in music) determines how 
successions of musical events are perceived as belonging to coherent 
sequences and, at the same time, segregated from other independent 
musical sequences.   
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different parts (perceptually implausible) neither in 
voices that are not perceptually independent (e.g. inner 
parts in an accompaniment) but within voices that are 
heard as having a life of their own.  

Voice separation algorithms such as [3, 5, 8, 9, 10, 
11, 12] assume that ‘voice’ is a monophonic sequence 
of successive non-overlapping musical tones (exception 
is the model by Kilian and Hoos [8] which is discussed 
below). The underlying perceptual principles that 
organise tones in voices are the principles of temporal 
and pitch proximity (cf. Huron’s [7] Temporal 
Continuity and Pitch Proximity principles). 

In essence, these models attempt to determine a 
minimal number of lines/voices such that each line 
consists of successions of tones that are maximally 
proximal in the temporal and pitch dimensions 
(maximum number of voices is equal to the number of 
notes in the largest chord). These models assume that a 
voice is a succession of individual non-overlapping 
tones (sharing of tones between voices or crossing of 
voices is forbidden or discouraged). 

Kilian and Hoos’s [8] model is pioneering in the 
sense that multi-note sonorities within single voices are 
allowed. The pragmatic goal of the algorithm is the 
derivation of reasonable score notation - not 
perceptually meaningful voices (see [8], p.39). The 
algorithm is based on perceptual principles in terms of a 
cost function that sums penalty values for features 
promoting segregation, such as large pitch intervals, 
rests/gaps, and note overlap between successive notes, 
and large pitch intervals and onset asynchrony within 
chords; penalty values are user-defined. The results, 
however, are not necessarily perceptually valid (e.g., a 
4-part homophonic piece may be ‘forced’ to split into 
two musical staves that do not correspond to 
perceptually pertinent streams). The algorithm does not 
discover automatically the number of independent 
musical ‘voices’ in a given excerpt; if the user has not 
defined the maximum number of voices, the algorithm 
automatically sets the maximum number equal to the 
maximum number of co-sounding notes – in this case 
the algorithm becomes similar to all other algorithms 
mentioned above. 

Kilian and Hoos’s model allows multiple 
synchronous or overlapping tones in a single voice 
based on pitch and temporal proximity. However, there 
are two problems with the way this idea is integrated in 
the model. Firstly, simple pitch and temporal proximity 
are not sufficient for perceptually pertinent ‘vertical’ 
integration (see next section). For instance, their model 
can separate a 4-part fugue into two ‘streams’ based on 
temporal and pitch proximity, but these two ‘streams’ 
are not perceptual streams but rather a convenient way 
to divide notes into two staves. In perceptual terms, 
overlapping tones with different onsets and durations do 
not tend to merge (there exist, however, special cases 
where this happens – not discussed in this paper). 
Secondly, synchronous notes that are separated by a 
small pitch interval are not in general more likely to be 
fused than tones further apart. For instance, tones an 
octave apart are strongly fused whereas tones a 2nd apart 
are less likely to be fused (see next section). The 

perceptual factor of tonal fusion is not taken into 
account by the model.  

3. PERCEPTUAL PRINCIPLES FOR VOICE 
SEPARATION 

In this section, fundamental principles of perceptual 
organisation of musical sounds into streams will be 
presented that form the basis of the current 
computational model (next section). Huron [7] provides 
an excellent survey of relevant research and presents a 
set of 10 principles that cover all major aspects of 
stream integration/segregation; we will use four of these 
principles as the starting-point of our exploration. 

3.1. Vertical Integration 

Bregman [1] explores in depth processes relating to the 
perceptual integration/segregation of simultaneous 
auditory components. In this paper, we will focus only 
on two aspects of such processes that relate to two 
principles presented by Huron [7], namely the principles 
of Onset Synchrony and Tonal Fusion.  

Sounds that are coordinated and evolve 
synchronously in time tend to be perceived as 
components of a single auditory event.  Concurrent 
tones that start, evolve and finish together tend to be 
merged perceptually. The proposed principle (below) 
relates to Huron’s Onset Synchrony Principle but it 
differs in a number of ways as discussed by 
Cambouropoulos [2]. 

Synchronous Note Principle: Notes with synchronous 
onsets and same inter-onset intervals IOIs (durations) 
tend to be merged into a single sonority. 

A second important factor for vertical integration of 
tones, relates to the Principle of Tonal Fusion:  

Principle of Tonal Fusion: The perceptual 
independence of concurrent tones is weakened when 
they are separated by intervals (in decreasing order: 
unisons, octaves, perfect fifths…) that promote tonal 
fusion ([7], p.19).  

This principle suggests that concurrent pitches are 
integrated depending on the degree of tonal fusion 
implied by interval type rather than mere pitch 
proximity; this principle appears to be (at least partially) 
in conflict with the pitch proximity principle that has 
been adopted for vertical integration in the 
computational model by Kilian and Hoos [8].  

Finally, according to the Pitch Co-modulation 
Principle: ‘The perceptual union of concurrent tones is 
encouraged when pitch motions are positively 
correlated.’ ([7], p.31) The strongest manifestation of 
this principle is when notes move in parallel intervals 
(especially in octaves). This principle has not yet been 
incorporated in the current version of the algorithm. 

3.2. Horizontal Integration 

The horizontal integration of musical elements (such as 
notes or chords) relies primarily on two fundamental 
principles: Temporal and Pitch Proximity. These 
principles are described by Huron [7] as follows: 

Principle of Temporal Continuity: ‘In order to evoke 
strong auditory streams, use continuous or recurring 



  
 

rather than brief or intermittent sound sources. 
Intermittent sounds should be separated by no more 
than roughly 800ms of silence in order to ensure the 
perception of continuity.’ (p.12).  
Pitch Proximity Principle: ‘The coherence of an 
auditory stream is maintained by close pitch proximity 
in successive tones within the stream. …’ (p.24) 

Most existing voice separation research takes these two 
principles as the basis for computational models.  

It is suggested, that a voice separation algorithm 
should start by identifying synchronous notes that tend 
to be merged into single sonorities and then use the 
horizontal streaming principles to break them down into 
separate streams (most algorithms ignore the vertical 
component). This is an optimization process wherein the 
various perceptual factors compete with each other in 
order to produce a ‘simple’ interpretation of the music 
in terms of a minimal number of streams.  

4. VISA: THE VOICE 
INTEGRATION/SEGREGATION ALGORITHM  

In this section we describe the proposed voice 
separation algorithm, referred to as Voice 
Integration/Segregation Algorithm (VISA).  

4.1. Merging Notes into Single Sonorities 

During vertical integration, according to the 
synchronous note principle (described in Section 3.1), 
we have to determine when to merge concurrent notes, 
i.e., notes with synchronous onsets and same IOIs. Since 
it is possible that synchronous notes may belong to 
different voices, we need a way to decide if such 
merging should be applied. 

Given a set of concurrent notes, the algorithm 
examines a certain musical excerpt (window) around 
them. If inside the window, most co-sounding notes 
have different onsets/offsets, then it is most likely that 
we have independent monophonic voices so occasional 
synchronous notes should not be merged. 

In particular, let the entire musical piece be 
represented as a list L of notes that are sorted according 
to their onset times. For any note n ∈ L, O(n) denotes its 
onset time. Moreover, for two notes n1 and n2 ∈ L, with 
O(n1) ≤ O(n2), inter(n1,n2) denotes the number of all 
intermediate notes, i.e., all nk ∈ L with O(n1) ≤ O(nk) ≤ 
O(n2). For a given set S of concurrent notes and a 
window size w, we consider the set W that contains the 
notes in a window with length w and centred on S. Thus, 
W is defined as follows: 
W={ni ∈L-S | ∀ n ∈ S inter(ni, n) ≤ w/2 ∨ inter(n, ni) ≤ w/2} 

Next, we examine if concurrency is frequent within 
W. We define the ratio r as follows (where IOI(n) 
denotes the inter-onset interval of note n): 
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Thus, by having a user-defined threshold T (in the range 

[0,1]) that signifies frequency, if r > T, we merge the 
notes of S as a single sonority.1 

4.2. The Algorithm  

The Voice Integration/Segregation Algorithm (VISA), 
receives as input the musical piece in the form of a list L 
of notes that are sorted according to their onset times, a 
window size w, and the threshold T. The output is a set 
of lists V (initially empty). After termination, each list 
contains the notes of each detected voice, each sorted 
according to onset times. Notice that VISA does not 
demand a-priori the number of voices. The proposed 
algorithm is illustrated in Figure 2. 

VISA(NoteList L, Set NoteList V, int w, float T) 
begin 

V ← ∅; 
while ((SLS ← getNextSweepLineSet(L)) ≠∅) 
begin-while 

C ←ClusterVertically(SLS, w, T); 
if (|V | < |C |) 
begin-if 

MatchVoicesToClusters(V, C); 
else 

MatchClustersToVoices(C, V); 
end-if 

end-while 
end 

Figure 2 The VISA algorithm. 

In VISA, a sweep line, starting from the beginning of  L, 
proceeds in a step-wise fashion (procedure 
getNextSweepLineSet) to the next onset time in L. 
The set of notes that have onsets equal to the position of 
the sweep line, is denoted as sweep line set (SLS). 
Notice that an SLS may contain one or more notes. 
Next, every SLS is divided into clusters using a 
procedure called ClusterVertically, which partitions the 
notes in the SLS into a set of clusters C. The 
ClusterVertically procedure, according to Section 4.1, 
has to detect contextual information, accepting, thus, as 
parameters w and T. If, based on context, we decide to 
merge concurrent notes; each cluster contains all notes 
with the same IOI (recall that all notes in SLS have 
identical onset time). Otherwise, if merging is not 
decided, each cluster contains a single note. The reason 
for this kind of clustering is two-fold: (i) Concurrent 
notes are highly probable to belong to the same voice, 
thus if merging is decided, they are initially placed in the 
same cluster (as will be explained later on a cluster may 
split). (ii) Overlapping (in time) but not concurrent 
notes, are placed into different clusters, because we do 
not desire any overlapping between notes of the same 
voice. 

Given the set of clusters, C, we have to assign them 
to voices. We can form a bipartite graph, where the one 
set of vertices corresponds to the currently detected 
voices and the other set of vertices corresponds to the 
clusters in C. Between every pair of vertices in the 
bipartite graph, i.e., between every detected voice vi and 
cluster cj, we draw an edge to which we assign a cost. 
                                                           
1 The denominator of r is the number of pairs with same onset times, as 
they represent the potential concurrent notes within W. 



  
 
This cost is compound and is determined by the two 
principles described in Section 3.2. Thus, according to 
the Principle of Temporal Continuity, we add to the edge 
cost an amount equal to the difference between the onset 
time of the notes in cj and the onset time of the most 
recent note (or most recent cluster of notes) in vi. If the 
notes in cj and the last note (or last cluster of notes) in vi 
overlap in time, then we set the edge cost equal to 
infinity, in order to forbid the assignment of cj to vi. 
Moreover, according to the Pitch Proximity Principle, 
we add to the cost the minimum absolute difference 
between the pitches of notes in cj and the pitch of the last 
note (or last cluster of notes) in vi. Thus, the total cost on 
the edge represents the temporal and pitch proximity 
between each pair cj and vi. 

Having determined the cost on every edge, we can 
solve the assignment problem by finding the matching 
with the lowest cost in the bipartite graph. Two cases are 
possible: (i) If |V| < |C|, i.e., the number of currently 
detected voices is smaller than the number of clusters in 
the SLS, then we match voices to clusters (procedure 
MatchVoicesToClusters). This is done by assigning to 
each of the currently detected voices a cluster, in a way 
that the total cost is minimized. The remaining clusters 
that have not been assigned to a voice constitute new 
voices that are added to V. This case is handled inside 
procedure MatchVoicesToClusters. (ii) Conversely, if 
|V| ≥ |C|, we match clusters to voices (procedure 
MatchClustersToVoices), i.e., each cluster is assigned 
to one of the currently detected voices, in a way that the 
total cost is minimized. Even though in the latter (ii) case 
the clusters are fewer than the voices, due to possible 
overlapping between notes in them, a matching may not 
be feasible (the total cost equals infinity). We handle this 
case (inside procedure MatchClustersToVoices) by 
creating new voices that enable a matching.  

Finally, we introduce two extra constraints to the 
problem of a matching. The first one is that voice 
crossing should be avoided, thus a sub-optimal solution 
in terms of cost may be required that avoids voice 
crossing. The second one is that, according to the Top 
Voice Rule [11], the matching has to take into account 
that the top voice should be minimally fragmented. This 
is handled by adding a penalty P to the cost of a 
matching that does not fulfil this rule. To find the 
matching with the minimal cost, a cluster may be split 
into sub-clusters, so that one can be assigned to the top 
voice. This may hold particularly in the special case 
where C contains a single cluster and there are more 
than one voices. More details about the inclusion of the 
two constraints in the matching procedures are given in 
Section 4.3. 

4.3. The Matching Process 

For convenience, we convert the minimisation problem 
to an equivalent maximisation one. Therefore, we are 
interested in maximising the total matching instead of 
minimising it. For this reason, the assignment of the cost 
w(eij) between a voice vi and a cluster cj is converted to 
max{ekl} – w(eij), where max{ekl} is the maximum edge 
cost determined for the specific instance of the matching 

problem (and this cost is due to the edge connecting 
voice vk and cluster cl) .  

(a) pair-wise costs

v1

v2

v3

v1

v2

v3

c1

c2

c3

c4

c5

c1

c2

c3

c4

c5

v1 9 1 9 1
v2 9 1 1 5
v3 0 1 0 5

c1 c2 c3 c4 c5

1
0
8

(b) best matching (c) best crossing-free matching  
Figure 3 Maximum matching examples 

Traditional bipartite matching algorithms do not 
preserve the order of the matching. In our case, order 
preservation is important because voice crossing should 
be avoided. By enforcing the rule that each matched pair 
should not ‘intersect’ another matched pair, a new 
problem is formulated that can not be directly tackled by 
bipartite matching algorithms. This issue is depicted in 
Figure 3, where an instance is illustrated with three 
voices and five clusters.  Figure 3(a) gives the pair-wise 
costs for assigning voices to clusters. A maximum 
weighted matching is given in Figure 3(b), with a total 
cost of 9+9+5 = 23. Evidently, the maximum weighted 
matching in this graph does not necessarily avoid voice 
crossing. A crossing-free maximum weighted matching 
with cost 9+5+8 = 22 is depicted in Figure 3(c).  

Although the number of voices and clusters is 
usually small (i.e., 3, 4, 5) we propose en efficient 
solution which can handle larger numbers of voices and 
clusters. The naïve approach to determine the best 
crossing-free matching is to perform an exhaustive 
search. This technique does not scale well for larger 
number of voices and clusters.  

The proposed matching algorithm is based on 
dynamic programming (Cormen et. al. 2001). Let VSEQ 
denote the sequence of notes, and CSEQ be the 
sequence of clusters. Without loss of generality, we 
assume that we have less voices than clusters, i.e. 
|VSEQ| < |CSEQ|. Equality is trivially solved by 
matching the first voice to the first cluster, the second 
voice to the second cluster and so forth. The case where 
|VSEQ| > |CSEQ| is handled similarly. Let Mij denote the 
current total matching cost after voice vi and cluster ci 
have been matched. The recurrence formula used by the 
dynamic programming technique in our case is the 
following:  

Mij = max{Mi-1,j-1 + w(i,j), Mi-1,j} 

This formula states that either voice vi will be matched 
with cluster cj, or a gap will be placed in the voice 
sequence, meaning that we postpone the matching of vi. 
We illustrate the matching process by using the example 
instance given in Figure 3. Therefore, VSEQ = v1, v2, v3 
and CSEQ = c1, c2, c3, c4, c5. The matching process for 
is depicted in Figure 4(a), where each cell of the matrix 
M represents the total matching cost. The matrix has 
3+1=4 rows and 5+1=6 columns (an additional row and 
column have been placed). The matrix is filled 
according to the previous recurrence equation, by 
starting at the upper-left cell and ending at the lower-



  
 
right one. Initially we place a zero in the first row and 
first column of the matrix. The cost of the maximum 
matching is shown in the lower-right cell, which 
contains the value 22. 

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

      c1   c2   c3  c4  c5

v1
v2
v3

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

      c1   c2   c3  c4  c5

v1
v2
v3

(a) matching costs (b) matching path

      c1     c2     c3    c4    c5

      v1     __     __    v2    v3

(c) final assigment  
Figure 4 The matching process 

The best matching cost by itself does not give the 
assignment of voices to clusters. To achieve this, the 
matching path needs to be determined. We perform a 
trace-back process starting at the cell which contains the 
best matching value (i.e. cell with the value 22 in the 
matrix).  Based on the fact that the matching cost of v3 
and c5 is 8, the only possible predecessors are the top 
and diagonal cells which contain the value 14. However, 
in the trace-back process we never choose a vertical cell, 
since no gaps are allowed to be placed on the cluster 
sequence, meaning that all voices must be matched. The 
only alternative left is to choose the diagonal cell. This 
means that voice v3 will be matched to cluster c5. The 
current cell is now (2,4) which contains the value 14. 
Again, since the matching cost of v2 and c4 is 5, the only 
valid predecessor is cell (1,3) which contains the value 9 
(recall that we never move vertically). Since we have 
chosen to move diagonally, we match voice v2 to cluster 
c4.  The next two steps involve a horizontal movement, 
meaning that we place two gaps in the voice sequence. 
These steps take us to cell (1,1) from where we can only 
move diagonally to cell (0,0). This diagonal movement 
implies an assignment of voice v1 to cluster c1. The final 
assignment is given in Figure 4(c), whereas the matching 
path is given in Figure 4(b), and is represented by the 
shaded cells. 

According to the previous discussion, the running 
time of the algorithm is O(n*m) (n>=2, m>=2) where n 
is the number of voices and m the number of clusters. 
Evidently, we need O(n*m) time to calculate all 
elements of the matrix M, and O(n+m) time to 
reconstruct the matching path. On the other hand, if an 
exhaustive algorithm is used the number of all available 
crossing-free matchings that can be produced are 
C(m,n), which are all possible combinations of selecting 
n out of m items. For some values of m and n, the 
exhaustive algorithm performs better than dynamic 
programming. Therefore, according to the current values 
of m and n we can decide whether to use the exhaustive 
method or switch to dynamic programming. However, 
even if in several cases the exhaustive method performs 
better, counting all possible matchings and selecting the 
best one may become tedious, since we have to keep 
track of which matchings have been examined and 
which have not. On the other hand, dynamic 

programming offers a more clear framework and 
determines the best matching in a more manageable and 
systematic way. 

5. EXPERIMENTS AND RESULTS 

The proposed algorithm has been tested on a small set 
of musical works for piano. Eight pieces with clearly 
defined streams/voices are used as groundtruth for 
testing the performance of the algorithm. The first four 
pieces are two fugues and two inventions by J.S.Bach; 
these polyphonic works consist of independent 
monophonic voices. Two mazurkas and a waltz by 
F.Chopin consist of a melody (upper staff) and 
accompanying harmony (lower staff). Finally, the 
“Harmony Club Waltz” by S.Joplin has two parallel 
homophonic streams (chordal ‘voices’) that correspond 
to the two piano staves. See excerpts in Figures 5, 6, 7. 

In this pilot study, the aim was to examine if a single 
algorithm can be applied to two very different types of 
music (i.e. pure polyphonic music and music containing 
clear homophonic textures). All the parameters of the 
algorithm are the same for all eight pieces; the number 
of streams/voices is determined automatically (not set 
manually). It should be noted that for the pieces by 
Chopin and Joplin all other voice separation algorithms 
would determine automatically at least four different 
voices (up to eight voices) that do not have perceptual 
validity (and musicologically are problematic). 

Annotated datasets for musical streams/voices - as 
voices are defined in this paper - do not exist. A small 
dataset was therefore selected for which it is assumed 
that musicologists/musical analysts would unreservedly 
agree on the number of independent musical streams in 
each piece.1 At present, the algorithm has been applied 
to quantised musical data (symbolic scores converted to 
MIDI) - expressively performed musical data can be 
quantised (e.g., [3]) before being fed into the algorithm.  

 
Figure 5 Four independent streams/voices are present 
in this excerpt from the Fugue No.1 in C major, WTCI, 
BWV846 by J.S.Bach. The algorithm performs voice 
separation correctly except for the last five notes of the 
upper voice which are assigned to the second voice 
rather than the first voice (as these are closer by a 
semitone to the last note of the second voice). 

 
Figure 6 In the opening of the Mazurka, Op.7, No.5 by 
F.Chopin, the algorithm detects correctly one voice 
(low octaves) and, then, switches automatically to two 
voices (melody and accompaniment). 

                                                           
1 These independent ‘voices’ correspond to separate spines in the kern 
format; all four test pieces have been obtained from KernScores  
<http://kern.humdrum.org>. 



  
 

 
Figure 7 Two independent chordal streams/voices are 
correctly determined by the algorithm in this excerpt 
from the “Harmony Club Waltz” by S.Joplin; the only 
mistake is indicated by the circled note which is placed 
‘erroneously’ in the upper stream (because of pitch 
proximity). 

The evaluation metrics used is the precision of the 
obtained result. For the previously described musical 
dataset, Table 1 shows the results. The effectiveness of 
the proposed methodology is evident by the high 
precision rates achieved for all eight pieces.  

 
Musical Work Precision 

J.S.Bach, Fugue No.1 in C major, BWV846 92,38% 
J.S.Bach, Fugue No.14 in F# major, BWV859 95,56% 
J.S.Bach, Invention No.1 in C Major, BWV 772 99.34% 
J.S.Bach, Invention No.13 in A Min, BWV 784  96.45% 
F. Chopin, Mazurka, Op.7, No.5 100% 
F. Chopin, Mazurka in A Minor, Op. 67, No.4 85.00% 
F. Chopin, Waltz in B Minor, Op. 69, No. 2 90.31% 
S.Joplin, “Harmony Club Waltz” 98.12% 

Table 1 Results in terms of precision for the dataset.   

Additionally, we have experimented with the impact of 
the user-defined threshold value T on the precision of the 
proposed algorithm (Figure 8). The mazurka and waltz 
datasets naturally exhibit increased synchronicity of 
notes, thus lower values of T give high precision, while 
on the contrary, the two fugues do not include notes that 
can be merged into single sonorities and thus require 
higher values of T. 
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Figure 8 Precision vs. user-defined threshold T. 

The results were examined in detail (qualitative 
analysis) in order to understand the kinds of mistakes 
produced by the algorithm. The majority of wrong 
results were given in cases where the number of voices 
change and erroneous connections are introduced 
primarily due to pitch proximity (for instance, see last 
upper five notes in Figure 5). Kilian and Hoos [8] 
address this same problem claiming that, in essence, it is 
unsolvable at the note level. A second kind of problem 
involves voice crossing. Since voice crossing is 
disallowed by the algorithm notes at points where 

voices cross (in the Bach fugues) are assigned to wrong 
voices. A third type of mistake relates to the breaking of 
vertically merged notes into sub-sonorities and 
allocating these to different voices; in this case the 
breaking point in the sonority may be misplaced (see, 
for instance, circled note in Figure 7). 

6. CONCLUSIONS 

In this paper the notions of voice and auditory stream 
have been examined. It is suggested that, if ‘voice’ is 
understood as a musicological parallel to the concept of 
auditory stream, then multi-note sonorities should be 
allowed within individual ‘voices’.  It is proposed that a 
first step in voice separation is identifying synchronous 
note sonorities and, then, breaking these into sub-
sonorities incorporated in horizontal streams or ‘voices’.  

The proposed voice separation algorithm, VISA, 
incorporates the two principles of temporal and pitch 
proximity, and additionally, the Synchronous Note 
Principle and the Tonal Fusion Principle. Allowing both 
horizontal and vertical integration enables the algorithm 
to perform well not only in polyphonic music that has a 
fixed number of ‘monophonic’ lines but in the general 
case where both polyphonic and homophonic elements 
are mixed together (see, for instance, Figure 6). We 
have shown in the above experiments that a single 
algorithm, with the same parameters, can achieve good 
performance in diverse musical textures in terms of 
identifying perceptually pertinent voices/streams. 
Ongoing research involves testing the algorithm on a 
much larger database; future work will incorporate 
additional principles such as the Pitch Co-modulation 
Principle.  
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